organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)pyridine-3,5-dicarboxylate

Juanjuan Zheng,^a Xueyuan Wang,^b Dongying Pang,^b Yan Sun^c and Wei Su^c*

^aDepartment of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China, ^bTianlin Centralpharm Limited Company, Tianiin 300072, People's Republic of China, and ^cHigh Pressure Adsorption Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: suweihb@tiu.edu.cn

Received 21 September 2011; accepted 27 September 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.097; data-to-parameter ratio = 16.7.

The title compound, C₁₇H₁₆N₂O₆, is a decomposition product of the hypertension drug nifedipine [systematic name: dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate]. The dihedral angle between the nitrosophenyl ring and the pyridine ring is $67.1 (5)^{\circ}$.

Related literature

For the calcium antagonistic activity of compounds of the 1,4dihydropyridine class, which inhibit the influx of Ca^{2+} ions through plasma membrane channels, see: Núnez-Vergara et al. (1994) and for their current use in the treatment of a variety of cardiovascular disorders such as angina and hypertension, see: Triggle et al. (1989); Hurwitz et al. (1991). For general background to derivatives of the dihydropyridine calcium channel blockers nifedipine [3,5-dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate] and nisoldpine [isobutyl methyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4dihydropyridine-3,5-dicarboxylate], see: Chen et al. (2010); Rowan & Holt (1996, 1997a,b); Schultheiss et al. (2010). For standard bond lengths, see: Allen et al. (1987).

Experimental

Crystal data

•	
$C_{17}H_{16}N_2O_6$	$\gamma = 105.39 \ (3)^{\circ}$
$M_r = 344.32$	V = 816.4 (8) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 7.578 (4) Å	Mo $K\alpha$ radiation
b = 8.141 (4) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 14.235 (9) Å	$T = 298 { m K}$
$\alpha = 103.32 \ (2)^{\circ}$	$0.20 \times 0.18 \times 0.12 \text{ mm}$
$\beta = 93.75 \ (5)^{\circ}$	

Data collection

Rigaku Saturn724 CCD diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.979, \ T_{\max} = 0.987$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ 230 parameters $wR(F^2) = 0.097$ H-atom parameters constrained S = 1.03 $\Delta \rho_{\rm max} = 0.21 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.29$ e Å⁻³ 3843 reflections

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008): program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2005).

8658 measured reflections

 $R_{\rm int} = 0.047$

3843 independent reflections

2247 reflections with $I > 2\sigma(I)$

This study was supported by the Tianjin Natural Science Foundation (10JCZDJC23900).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2031).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Chen, H., Qu, D., Wang, Q.-F. & Jiang, R. (2010). Acta Cryst. E66, 0619.

Hurwitz, L., Partridge, L. D. & Leach, J. K. (1991). In Calcium Channels: Their Properties, Functions, Regulation and Clinical Relevance. Boca Raton, Florida, USA: CRC Press.

- Núnez-Vergara, L. J., Sunkel, C. & Squella, J. A. (1994). J. Pharm. Sci. 83, 502-507.
- Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Rowan, K. R. & Holt, E. M. (1996). Acta Cryst. C52, 1565-1570.
- Rowan, K. R. & Holt, E. M. (1997a). Acta Cryst. C53, 106-108.
- Rowan, K. R. & Holt, E. M. (1997b). Acta Cryst. C53, 257-261.
- Schultheiss, N., Roe, M. & Smit, J. P. (2010). Acta Cryst. E66, 02297-02298.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Triggle, D. J., Langs, D. A. & Janis, R. A. (1989). Med. Res. Rev. 9, 123-180.

supplementary materials

Acta Cryst. (2011). E67, o2820 [doi:10.1107/S1600536811039626]

Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)pyridine-3,5-dicarboxylate

J. Zheng, X. Wang, D. Pang, Y. Sun and W. Su

Comment

Compounds of the 1,4-dihydropyridine class exhibit calcium antagonistic activity, as they inhibit the influx of Ca^{2+} ions through plasma membrane channels (Núnez-Vergara, Sunkel & Squella, 1994). Compounds of this class are currently being used in the treatment of a variety of cardiovascular disorders, such as angina and hypertension (Triggle *et al.*, 1989; Hurwitz *et al.*, 1991). Nifedipine [dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate], is the best known member of this class. The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The dihedral angle between the nitrosophenyl ring and the pyridine ring is 67.1°.

Experimental

The title compound was prepared by adding following steps. 1: Add 1 g nifedipine and 10 g $(NH_4)_2S_2O_8$ to the 100 ml acetone solution(50%). 2: Stir for 12 h at 30 °C.3:Regulate the solution to pH=8 with Na₂CO₃. The resulting solution was extracted with methylene chloride. The organic layer was dried over MgSO₄ and evaporated under reduced pressure. Following washing the extract with water, crystals of suitable size for single-crystal analysis were recrystallized from methanol.

Refinement

H atoms were positioned geometrically, with C—H = 0.93 and 0.96 A ° for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xUeq(C)$, where x = 1.2 for aromatic and x = 1.5 for methyl H atoms.

Figures

Fig. 1. [3,5-dimethyl 2,6-dimethyl-4-(2-nitrophenyl)pyridine-3,5-dicarboxylate]

Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)pyridine-3,5-dicarboxylate

Crystal data $C_{17}H_{16}N_2O_6$ $M_r = 344.32$

Z = 2		
F(000)	=	360

supplementary materials

Triclinic, P1
<i>a</i> = 7.578 (4) Å
b = 8.141 (4) Å
c = 14.235 (9) Å
$\alpha = 103.32 \ (2)^{\circ}$
$\beta = 93.75 \ (5)^{\circ}$
γ = 105.39 (3)°
V = 816.4 (8) Å ³

Data collection

Rigaku Saturn724 CCD diffractometer	3843 independent reflections
Radiation source: rotating anode	2247 reflections with $I > 2\sigma(I)$
multilayer	$R_{\rm int} = 0.047$
Detector resolution: 14.22 pixels mm ⁻¹	$\theta_{\text{max}} = 27.9^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$
ω and ϕ scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005)	$k = -10 \rightarrow 10$
$T_{\min} = 0.979, \ T_{\max} = 0.987$	$l = -18 \rightarrow 17$
8658 measured reflections	

 $D_{\rm x} = 1.401 {\rm Mg m}^{-3}$

 $0.20\times0.18\times0.12~mm$

 $\theta = 1.5-28.0^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 298 KPrism, yellow

Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 2919 reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.097$	H-atom parameters constrained
<i>S</i> = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.028P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
3843 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
230 parameters	$\Delta \rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.76803 (15)	0.93198 (15)	0.92024 (8)	0.0333 (3)
O2	0.84798 (13)	0.68996 (14)	0.85050 (7)	0.0240 (3)
03	0.40716 (15)	0.78829 (15)	0.70787 (8)	0.0344 (3)
O4	0.63979 (19)	0.91761 (16)	0.64507 (10)	0.0520 (4)
O5	0.13443 (14)	0.30250 (15)	0.61801 (7)	0.0279 (3)
O6	0.18628 (14)	0.11367 (14)	0.70271 (7)	0.0259 (3)
N1	0.26875 (17)	0.55143 (17)	0.95102 (9)	0.0218 (3)
N2	0.54570 (19)	0.78817 (18)	0.66853 (9)	0.0283 (3)
C1	0.5124 (2)	0.7905 (2)	1.05399 (10)	0.0256 (4)
H1A	0.4799	0.8996	1.0549	0.038*
H1B	0.6471	0.8165	1.0651	0.038*
H1C	0.4582	0.7401	1.1054	0.038*
C2	0.4386 (2)	0.6606 (2)	0.95644 (10)	0.0200 (3)
C3	0.53855 (19)	0.65051 (19)	0.87679 (10)	0.0184 (3)
C4	0.45649 (19)	0.52477 (19)	0.78913 (10)	0.0175 (3)
C5	0.2806 (2)	0.4125 (2)	0.78490 (10)	0.0188 (3)
C6	0.1892 (2)	0.4295 (2)	0.86757 (11)	0.0200 (3)
C7	-0.0011 (2)	0.3140 (2)	0.86810 (11)	0.0278 (4)
H7A	0.0077	0.2160	0.8954	0.042*
H7B	-0.0653	0.2675	0.8013	0.042*
H7C	-0.0701	0.3832	0.9080	0.042*
C8	0.7278 (2)	0.7743 (2)	0.88633 (11)	0.0214 (3)
С9	1.0316 (2)	0.8018 (2)	0.84997 (12)	0.0297 (4)
H9A	1.0228	0.8948	0.8183	0.045*
H9B	1.1038	0.7310	0.8141	0.045*
H9C	1.0925	0.8554	0.9171	0.045*
C10	0.55534 (18)	0.50220 (19)	0.70104 (10)	0.0176 (3)
C11	0.6085 (2)	0.3487 (2)	0.67264 (10)	0.0226 (4)
H11	0.5774	0.2612	0.7077	0.027*
C12	0.7059 (2)	0.3213 (2)	0.59432 (11)	0.0267 (4)
H12	0.7401	0.2154	0.5759	0.032*
C13	0.7538 (2)	0.4482 (2)	0.54255 (11)	0.0263 (4)
H13	0.8218	0.4296	0.4893	0.032*
C14	0.7024 (2)	0.6014 (2)	0.56854 (11)	0.0237 (4)
H14	0.7342	0.6887	0.5334	0.028*
C15	0.60384 (19)	0.6254 (2)	0.64663 (10)	0.0202 (3)
C16	0.19127 (19)	0.2747 (2)	0.69257 (11)	0.0200 (3)
C17	0.1122 (2)	-0.0294 (2)	0.61593 (12)	0.0364 (4)
H17A	-0.0139	-0.0318	0.5937	0.055*
H17B	0.1105	-0.1415	0.6307	0.055*
H17C	0.1898	-0.0116	0.5646	0.055*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0287 (7)	0.0182 (6)	0.0483 (8)	0.0042 (5)	0.0079 (5)	0.0014 (6)
O2	0.0200 (6)	0.0216 (6)	0.0293 (6)	0.0058 (5)	0.0056 (5)	0.0041 (5)
03	0.0382 (7)	0.0388 (8)	0.0381 (7)	0.0221 (6)	0.0167 (6)	0.0170 (6)
04	0.0680 (10)	0.0273 (8)	0.0727 (10)	0.0148 (7)	0.0355 (8)	0.0278 (8)
05	0.0279 (6)	0.0343 (7)	0.0211 (6)	0.0059 (5)	0.0023 (5)	0.0102 (5)
06	0.0320 (6)	0.0194 (6)	0.0223 (6)	0.0061 (5)	-0.0008 (5)	0.0004 (5)
N1	0.0245 (7)	0.0220 (7)	0.0214 (7)	0.0086 (6)	0.0074 (5)	0.0072 (6)
N2	0.0376 (9)	0.0251 (8)	0.0255 (8)	0.0098 (7)	0.0069 (6)	0.0111 (7)
C1	0.0318 (9)	0.0260 (9)	0.0212 (8)	0.0119 (8)	0.0040 (7)	0.0058 (7)
C2	0.0248 (8)	0.0195 (8)	0.0188 (8)	0.0109 (7)	0.0036 (6)	0.0057 (7)
C3	0.0200 (8)	0.0168 (8)	0.0211 (8)	0.0080 (7)	0.0040 (6)	0.0065 (7)
C4	0.0205 (8)	0.0173 (8)	0.0188 (8)	0.0094 (7)	0.0062 (6)	0.0072 (7)
C5	0.0210 (8)	0.0190 (8)	0.0188 (8)	0.0077 (7)	0.0052 (6)	0.0066 (7)
C6	0.0222 (8)	0.0190 (8)	0.0217 (8)	0.0082 (7)	0.0065 (6)	0.0072 (7)
C7	0.0247 (9)	0.0281 (10)	0.0287 (9)	0.0048 (8)	0.0119 (7)	0.0045 (8)
C8	0.0248 (8)	0.0223 (9)	0.0176 (8)	0.0074 (7)	0.0039 (6)	0.0051 (7)
C9	0.0192 (8)	0.0312 (10)	0.0363 (10)	0.0029 (7)	0.0059 (7)	0.0085 (8)
C10	0.0131 (7)	0.0195 (8)	0.0170 (8)	0.0008 (6)	0.0016 (6)	0.0034 (6)
C11	0.0219 (8)	0.0213 (9)	0.0241 (9)	0.0054 (7)	0.0041 (7)	0.0055 (7)
C12	0.0244 (9)	0.0258 (9)	0.0285 (9)	0.0101 (8)	0.0054 (7)	0.0005 (8)
C13	0.0201 (8)	0.0334 (10)	0.0210 (9)	0.0047 (8)	0.0067 (6)	0.0012 (8)
C14	0.0207 (8)	0.0276 (9)	0.0194 (8)	0.0001 (7)	0.0039 (6)	0.0071 (7)
C15	0.0185 (8)	0.0193 (8)	0.0207 (8)	0.0034 (7)	0.0023 (6)	0.0036 (7)
C16	0.0142 (7)	0.0234 (9)	0.0231 (9)	0.0041 (7)	0.0080 (6)	0.0073 (7)
C17	0.0424 (11)	0.0262 (10)	0.0303 (10)	0.0072 (9)	-0.0033 (8)	-0.0074 (8)
Geometric	parameters (Å, °)					
01 00		1 200 ((10)	95	G1 (1.44	

01	1.2086 (18)	C5-C16	1.498 (2)
O2—C8	1.3392 (18)	C6—C7	1.500 (2)
O2—C9	1.4485 (18)	C7—H7A	0.9800
O3—N2	1.2218 (16)	С7—Н7В	0.9800
O4—N2	1.2349 (16)	C7—H7C	0.9800
O5—C16	1.2107 (18)	С9—Н9А	0.9800
O6—C16	1.3427 (19)	С9—Н9В	0.9800
O6—C17	1.4481 (19)	С9—Н9С	0.9800
N1—C2	1.342 (2)	C10—C15	1.393 (2)
N1—C6	1.344 (2)	C10-C11	1.394 (2)
N2—C15	1.478 (2)	C11—C12	1.385 (2)
C1—C2	1.506 (2)	C11—H11	0.9500
C1—H1A	0.9800	C12—C13	1.388 (2)
C1—H1B	0.9800	C12—H12	0.9500
C1—H1C	0.9800	C13—C14	1.381 (2)
C2—C3	1.403 (2)	С13—Н13	0.9500
C3—C4	1.401 (2)	C14—C15	1.385 (2)

C3—C8	1.495 (2)	C14—H14	0.9500
C4—C5	1.390 (2)	С17—Н17А	0.9800
C4—C10	1.502 (2)	С17—Н17В	0.9800
C5—C6	1.402 (2)	C17—H17C	0.9800
C8—O2—C9	115.40 (13)	O2—C8—C3	111.74 (14)
C16—O6—C17	115.28 (12)	О2—С9—Н9А	109.5
C2—N1—C6	120.11 (13)	О2—С9—Н9В	109.5
O3—N2—O4	123.19 (15)	Н9А—С9—Н9В	109.5
O3—N2—C15	118.96 (13)	О2—С9—Н9С	109.5
O4—N2—C15	117.85 (14)	Н9А—С9—Н9С	109.5
C2—C1—H1A	109.5	Н9В—С9—Н9С	109.5
C2—C1—H1B	109.5	C15—C10—C11	116.86 (13)
H1A—C1—H1B	109.5	C15—C10—C4	125.17 (14)
C2—C1—H1C	109.5	C11—C10—C4	117.94 (13)
H1A—C1—H1C	109.5	C12—C11—C10	121.28 (15)
H1B—C1—H1C	109.5	C12—C11—H11	119.4
N1—C2—C3	121.69 (15)	C10-C11-H11	119.4
N1—C2—C1	114.91 (13)	C11—C12—C13	120.22 (15)
C3—C2—C1	123.39 (14)	C11—C12—H12	119.9
C4—C3—C2	118.72 (14)	C13—C12—H12	119.9
C4—C3—C8	121.45 (13)	C14—C13—C12	119.93 (14)
C2—C3—C8	119.83 (14)	C14—C13—H13	120.0
C5—C4—C3	118.81 (13)	С12—С13—Н13	120.0
C5—C4—C10	118.94 (14)	C13—C14—C15	118.90 (15)
C3—C4—C10	122.20 (13)	C13—C14—H14	120.5
C4—C5—C6	119.36 (14)	C15—C14—H14	120.5
C4—C5—C16	119.84 (13)	C14—C15—C10	122.80 (15)
C6—C5—C16	120.80 (14)	C14—C15—N2	116.56 (14)
N1—C6—C5	121.30 (14)	C10—C15—N2	120.61 (13)
N1—C6—C7	116.40 (13)	O5—C16—O6	123.94 (15)
C5—C6—C7	122.30 (14)	O5—C16—C5	125.59 (15)
С6—С7—Н7А	109.5	O6—C16—C5	110.45 (13)
С6—С7—Н7В	109.5	O6—C17—H17A	109.5
H7A—C7—H7B	109.5	O6—C17—H17B	109.5
С6—С7—Н7С	109.5	H17A—C17—H17B	109.5
H7A—C7—H7C	109.5	О6—С17—Н17С	109.5
H7B—C7—H7C	109.5	H17A—C17—H17C	109.5
O1—C8—O2	123.61 (15)	H17B—C17—H17C	109.5
01—C8—C3	124.63 (14)		
C6—N1—C2—C3	-0.6 (2)	C5-C4-C10-C15	115.28 (17)
C6—N1—C2—C1	-179.75 (12)	C3—C4—C10—C15	-67.4 (2)
N1—C2—C3—C4	1.1 (2)	C5-C4-C10-C11	-66.86 (18)
C1—C2—C3—C4	-179.85 (13)	C3—C4—C10—C11	110.45 (17)
N1—C2—C3—C8	-179.70 (13)	C15-C10-C11-C12	0.4 (2)
C1—C2—C3—C8	-0.7 (2)	C4—C10—C11—C12	-177.67 (14)
C2—C3—C4—C5	-1.2 (2)	C10-C11-C12-C13	0.4 (2)
C8—C3—C4—C5	179.60 (13)	C11—C12—C13—C14	-0.7 (2)
C2—C3—C4—C10	-178.56 (13)	C12—C13—C14—C15	0.2 (2)

supplementary materials

C8—C3—C4—C10	2.3 (2)	C13—C14—C15—C10	0.6 (2)
C3—C4—C5—C6	0.9 (2)	C13-C14-C15-N2	-177.47 (13)
C10-C4-C5-C6	178.33 (13)	C11-C10-C15-C14	-0.9 (2)
C3—C4—C5—C16	-178.88 (13)	C4-C10-C15-C14	176.99 (14)
C10-C4-C5-C16	-1.5 (2)	C11-C10-C15-N2	177.12 (13)
C2—N1—C6—C5	0.3 (2)	C4-C10-C15-N2	-5.0 (2)
C2—N1—C6—C7	-179.65 (13)	O3—N2—C15—C14	152.38 (14)
C4—C5—C6—N1	-0.5 (2)	O4—N2—C15—C14	-27.0 (2)
C16-C5-C6-N1	179.35 (13)	O3—N2—C15—C10	-25.7 (2)
C4—C5—C6—C7	179.50 (13)	O4—N2—C15—C10	154.89 (15)
C16—C5—C6—C7	-0.7 (2)	C17—O6—C16—O5	1.9 (2)
C9—O2—C8—O1	-3.1 (2)	C17—O6—C16—C5	-176.59 (11)
C9—O2—C8—C3	175.45 (12)	C4—C5—C16—O5	-70.6 (2)
C4—C3—C8—O1	131.12 (17)	C6—C5—C16—O5	109.63 (18)
C2—C3—C8—O1	-48.0 (2)	C4—C5—C16—O6	107.95 (15)
C4—C3—C8—O2	-47.44 (18)	C6—C5—C16—O6	-71.86 (17)
C2—C3—C8—O2	133.40 (14)		

